If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+160t+20
We move all terms to the left:
t-(-16t^2+160t+20)=0
We get rid of parentheses
16t^2-160t+t-20=0
We add all the numbers together, and all the variables
16t^2-159t-20=0
a = 16; b = -159; c = -20;
Δ = b2-4ac
Δ = -1592-4·16·(-20)
Δ = 26561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-159)-\sqrt{26561}}{2*16}=\frac{159-\sqrt{26561}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-159)+\sqrt{26561}}{2*16}=\frac{159+\sqrt{26561}}{32} $
| (2x+6)-(5x-10)=4 | | 17x-9x=-6x-22 | | X+29=16+x+2x | | 20x+40=640 | | 5^x+7=37 | | 55x−33(x−33)=−66+66x-5 | | x2+5X=2X2-4X-20-190 | | |x-5|=|-5| | | 16x+45=-4x | | 5(u-1)-7=3(u-1)=2u | | 11-3x=15x+18 | | 14x-6=0-4x+48 | | y=45+y+8 | | 1/3x+1/4=12 | | 5d^2−9d+4=0 | | -7(7-7a)+4=-23+3a | | 5d2−9d+4=0 | | 6x-1=3x-6 | | -7(7-7x)+4=-23+3x | | -136-8x=8x-24 | | 4b/7=41 | | y=45=y | | -2(2x+6)=18 | | -3(y+1)+7y=-4(y+1)-7 | | 5x-3=+14x | | -7s−6=-6s | | 4(w-9)=2w-20 | | 10t+9=9t | | X+5.5+8=5x | | 40+9b=112 | | -10q−10=-5q | | 12=a/2 |